论文标题

确定性的Langevin Monte Carlo具有标准化贝叶斯推断的流量

Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference

论文作者

Grumitt, Richard D. P., Dai, Biwei, Seljak, Uros

论文摘要

我们建议使用昂贵的可能性的通用贝叶斯推论算法,用确定性密度梯度项代替Langevin方程中的随机项。使用归一流的流(NF)从当前粒子位置评估粒子密度,该流量是可区分的,并且具有良好的泛化特性。我们利用NF预处理和基于NF的大都市 - 杂货店更新,以更快地收敛。我们在各种示例中表明,该方法与最先进的采样方法具有竞争力。

We propose a general purpose Bayesian inference algorithm for expensive likelihoods, replacing the stochastic term in the Langevin equation with a deterministic density gradient term. The particle density is evaluated from the current particle positions using a Normalizing Flow (NF), which is differentiable and has good generalization properties in high dimensions. We take advantage of NF preconditioning and NF based Metropolis-Hastings updates for a faster convergence. We show on various examples that the method is competitive against state of the art sampling methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源