论文标题
在上下文中感知饮食活动:仅智能手机的方法
Sensing Eating Events in Context: A Smartphone-Only Approach
论文作者
论文摘要
虽然已经在使用各种可穿戴设备的工作中检查了自动检测饮食事件的任务,但使用智能手机作为独立设备来推断饮食事件仍然是一个悬而未决的问题。本文提出了一个框架,该框架被无源智能手机传感与无饮食事件相比,并在58名大学生的数据集中对其进行了评估。首先,我们表明一天中的时间以及屏幕使用,加速度计,应用程序使用和位置等方式的特征表明饮食和非饮食事件。然后,我们表明,使用独立的机器学习模型,可以使用0.65的AUROC(接收器操作特征曲线的区域(在接收器操作特征曲线)中推断出饮食事件,该模型可以进一步提高主题依赖性的0.81,而使用个性化技术则可以针对受试者依赖性和0.81进行0.81。此外,我们表明用户在饮食情节上具有不同的行为和上下文例程,需要特定的特征组来培训完全个性化的模型。这些发现对于未来的移动食品日记应用程序具有潜在的价值,这些应用程序通过仅使用智能手机启用可扩展的基于感应的饮食研究来感知上下文。检测未报告的饮食事件,从而提高基于自报告的研究中的数据质量;提供功能以跟踪食物消费并产生提醒,以准时收集食物日记;并支持健康饮食实践的移动干预措施。
While the task of automatically detecting eating events has been examined in prior work using various wearable devices, the use of smartphones as standalone devices to infer eating events remains an open issue. This paper proposes a framework that infers eating vs. non-eating events from passive smartphone sensing and evaluates it on a dataset of 58 college students. First, we show that time of the day and features from modalities such as screen usage, accelerometer, app usage, and location are indicative of eating and non-eating events. Then, we show that eating events can be inferred with an AUROC (area under the receiver operating characteristics curve) of 0.65 using subject-independent machine learning models, which can be further improved up to 0.81 for subject-dependent and 0.81 for hybrid models using personalization techniques. Moreover, we show that users have different behavioral and contextual routines around eating episodes requiring specific feature groups to train fully personalized models. These findings are of potential value for future mobile food diary apps that are context-aware by enabling scalable sensing-based eating studies using only smartphones; detecting under-reported eating events, thus increasing data quality in self report-based studies; providing functionality to track food consumption and generate reminders for on-time collection of food diaries; and supporting mobile interventions towards healthy eating practices.