论文标题

私人和拜占庭式合作决策

Private and Byzantine-Proof Cooperative Decision-Making

论文作者

Dubey, Abhimanyu, Pentland, Alex

论文摘要

合作的强盗问题是一个多代理的决策问题,涉及一组代理,这些代理与多臂强盗同时交互,同时通过延迟的网络进行通信。这个问题的核心思想是设计可以有效利用沟通的算法,以孤立地进行改进。在本文中,我们研究了在两个设置下的随机匪徒问题 - (a)当代理人希望对动作序列进行私人交流时,以及(b)当代理人可以成为拜占庭式时,即,它们提供(随机)不正确的信息。对于这两种问题设置,我们提供了上等信心结合的算法,这些算法在(a)差异私有化和(b)耐受性拜占庭药物的同时获得最佳的遗憾。我们的分散算法不需要有关代理之间连接网络的信息,这使其可扩展到大型动态系统。我们在随机图的竞争基准上测试我们的算法,并证明它们相对于现有鲁棒算法的出色性能。我们希望我们的工作是建立维持隐私的分布式决策系统的重要一步。

The cooperative bandit problem is a multi-agent decision problem involving a group of agents that interact simultaneously with a multi-armed bandit, while communicating over a network with delays. The central idea in this problem is to design algorithms that can efficiently leverage communication to obtain improvements over acting in isolation. In this paper, we investigate the stochastic bandit problem under two settings - (a) when the agents wish to make their communication private with respect to the action sequence, and (b) when the agents can be byzantine, i.e., they provide (stochastically) incorrect information. For both these problem settings, we provide upper-confidence bound algorithms that obtain optimal regret while being (a) differentially-private and (b) tolerant to byzantine agents. Our decentralized algorithms require no information about the network of connectivity between agents, making them scalable to large dynamic systems. We test our algorithms on a competitive benchmark of random graphs and demonstrate their superior performance with respect to existing robust algorithms. We hope that our work serves as an important step towards creating distributed decision-making systems that maintain privacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源