论文标题
PSL死了。 PSL万岁
PSL is Dead. Long Live PSL
论文作者
论文摘要
属性规范语言(PSL)是一种时间逻辑的一种形式,主要用于离散域(例如正式的硬件验证)。在本文中,我们表明,通过将机器学习技术与PSL显示器合并,我们可以将PSL扩展到连续域上。我们将此技术应用于基于机器学习的异常检测中,以分析连续变量的实时流媒体事件的场景,以检测系统的异常行为。通过将机器学习与正式模型一起使用,我们利用机器学习方法和正式语义的优势。一方面,机器学习技术可以在连续变量上产生分布,在这种变量中,异常可以作为与分布的偏差捕获。另一方面,形式方法可以表征离散的时间行为和关系,而机器学习技术无法轻易学习。有趣的是,通过机器学习和所使用的基本时间表示检测到的异常是离散事件。我们实施了一个时间监控软件包(TEF),该软件包与用于异常检测机学习系统的普通数据科学软件包一起运行,我们证明TEF可用于对事件之间的时间相关性进行准确的解释。
Property Specification Language (PSL) is a form of temporal logic that has been mainly used in discrete domains (e.g. formal hardware verification). In this paper, we show that by merging machine learning techniques with PSL monitors, we can extend PSL to work on continuous domains. We apply this technique in machine learning-based anomaly detection to analyze scenarios of real-time streaming events from continuous variables in order to detect abnormal behaviors of a system. By using machine learning with formal models, we leverage the strengths of both machine learning methods and formal semantics of time. On one hand, machine learning techniques can produce distributions on continuous variables, where abnormalities can be captured as deviations from the distributions. On the other hand, formal methods can characterize discrete temporal behaviors and relations that cannot be easily learned by machine learning techniques. Interestingly, the anomalies detected by machine learning and the underlying time representation used are discrete events. We implemented a temporal monitoring package (TEF) that operates in conjunction with normal data science packages for anomaly detection machine learning systems, and we show that TEF can be used to perform accurate interpretation of temporal correlation between events.