论文标题
非交通型卡坦夹杂物的感应限制
Inductive Limits of Noncommutative Cartan Inclusions
论文作者
论文摘要
我们证明,每当连接图具有配件,保留正常人和条件期望时,都会是非共同cartan夹杂物的感应限制是一种非交通的cartan包含。我们表明,在额外的假设下,电感极限cartan subgerbra本质上是可分离的,本质上是简单的,或者本质上是I型,我们在极限中获得了一个上的包含。因此,我们包含了构建块cartan子晶体构成可交换的情况,并提供了Xin li定理的证明,而无需传递到扭曲的étalegropoids。
We prove that an inductive limit of aperiodic noncommutative Cartan inclusions is a noncommutative Cartan inclusion whenever the connecting maps are injective, preserve normalisers and entwine conditional expectations. We show that under the additional assumption that the inductive limit Cartan subalgebra is either essentially separable, essentially simple or essentially of Type I we get an aperiodic inclusion in the limit. Consequently, we subsume the case where the building block Cartan subalgebras are commutative and provide a proof of a theorem of Xin Li without passing to twisted étale groupoids.