论文标题

Archimax Copulas的推理和抽样

Inference and Sampling for Archimax Copulas

论文作者

Ng, Yuting, Hasan, Ali, Tarokh, Vahid

论文摘要

了解分布的整体和尾巴中的多元依赖性对于许多应用来说都是一个重要的问题,例如确保算法对于不经常但具有毁灭性影响的观测值是强大的。 Archimax Copulas是一个具有精确表示的分布家族,可以同时建模分布和分布的尾巴。与其在实践中通常进行的两者分开,而是将大量的其他信息纳入其中可以改善观测值有限的尾巴的推断。在Archimax Copulas的随机表示的基础上,我们开发了一种非参数推断方法和采样算法。据我们所知,我们提出的方法是第一个允许高度灵活,可扩展的推理和采样算法,从而使Archimax Copulas在实际设置中增加了使用。我们通过实验性地与最新的密度建模技术进行了比较,结果表明,所提出的方法有效地外推到尾部,同时扩展到更高的尺寸数据。我们的发现表明,所提出的算法可用于多种应用,在各种应用中,必须了解分布的批量和尾巴之间的相互作用,例如医疗保健和安全。

Understanding multivariate dependencies in both the bulk and the tails of a distribution is an important problem for many applications, such as ensuring algorithms are robust to observations that are infrequent but have devastating effects. Archimax copulas are a family of distributions endowed with a precise representation that allows simultaneous modeling of the bulk and the tails of a distribution. Rather than separating the two as is typically done in practice, incorporating additional information from the bulk may improve inference of the tails, where observations are limited. Building on the stochastic representation of Archimax copulas, we develop a non-parametric inference method and sampling algorithm. Our proposed methods, to the best of our knowledge, are the first that allow for highly flexible and scalable inference and sampling algorithms, enabling the increased use of Archimax copulas in practical settings. We experimentally compare to state-of-the-art density modeling techniques, and the results suggest that the proposed method effectively extrapolates to the tails while scaling to higher dimensional data. Our findings suggest that the proposed algorithms can be used in a variety of applications where understanding the interplay between the bulk and the tails of a distribution is necessary, such as healthcare and safety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源