论文标题

Quaternionic Shimura曲线的模块化高度

Modular Heights of Quaternionic Shimura Curves

论文作者

Yuan, Xinyi

论文摘要

本文的目的是证明一个公式,表达Quaternionic Shimura曲线的模块化高度,就完全真实数字字段的Dedekind Zeta函数的对数衍生物而言,完全真实的数字字段上。我们的证明是基于Yuan-Zhang-Zhang对总体公式的工作以及Yuan-Zhang在平均Colmez猜想上的工作。所有这些作品反过来又受到了Gross-Zagier的开拓性工作和Kudla计划的一些哲学的启发。

The goal of this paper is to prove a formula expressing the modular height of a quaternionic Shimura curve over a totally real number field in terms of the logarithmic derivative of the Dedekind zeta function of the totally real number field. Our proof is based on the work of Yuan-Zhang-Zhang on the Gross-Zagier formula and the work of Yuan-Zhang on the averaged Colmez conjecture. All these works are in turn inspired by the Pioneering work of Gross-Zagier and some philosophies of Kudla's program.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源