论文标题

超龙石墨烯纳米纤维在绝缘底物上的催化生长

Catalytic growth of ultralong graphene nanoribbons on insulating substrates

论文作者

Lyu, Bosai, Chen, Jiajun, Lou, Shuo, Li, Can, Qiu, Lu, Ouyang, Wengen, Xie, Jingxu, Mitchell, Izaac, Wu, Tongyao, Deng, Aolin, Hu, Cheng, Zhou, Xianliang, Shen, Peiyue, Ma, Saiqun, Wu, Zhenghan, Watanabe, Kenji, Taniguchi, Takashi, Wang, Xiaoqun, Liang, Qi, Jia, Jinfeng, Urbakh, Michael, Hod, Oded, Ding, Feng, Wang, Shiyong, Shi, Zhiwen

论文摘要

具有少数纳米宽度的石墨烯纳米纤维(GNR)是有希望的未来纳米电动应用的候选者,因为它们的结构可调式带盖,超高载流子迁移率和出色的稳定性。但是,微米长的GNR在绝缘底物上的直接生长对于制造纳米电子设备至关重要,这是巨大的挑战。在这里,我们报告了通过纳米粒子催化的化学蒸气沉积(CVD)的绝缘六角硼(H-BN)底物的外延生长。合成长度高达10μm的超鼻中GNR。值得注意的是,生长的GNR在晶体学上与H-BN底物对齐,形成一维(1D)Moiré超晶格。扫描隧道显微镜显示,对于在传导石墨底物上生长的类似GNR,平均宽度为2 nm,典型的带隙为〜1 eV。完全原子的计算模拟支持实验结果,并揭示了成核阶段中GNR和碳纳米管(CNT)形成之间的竞争,并且在整个生长阶段,GNRS在H-BN底物上滑动了GNR。我们的研究提供了一种可扩展的单步方法,用于在绝缘底物上生长微米长的狭窄GNR,从而为探索高质量GNR设备的性能和1DMoiré超级晶格的基本物理学开辟了途径。

Graphene nanoribbons (GNRs) with widths of a few nanometres are promising candidates for future nano-electronic applications due to their structurally tunable bandgaps, ultrahigh carrier mobilities, and exceptional stability. However, the direct growth of micrometre-long GNRs on insulating substrates, which is essential for the fabrication of nano-electronic devices, remains an immense challenge. Here, we report the epitaxial growth of GNRs on an insulating hexagonal boron nitride (h-BN) substrate through nanoparticle-catalysed chemical vapor deposition (CVD). Ultra-narrow GNRs with lengths of up to 10 μm are synthesized. Remarkably, the as-grown GNRs are crystallographically aligned with the h-BN substrate, forming one-dimensional (1D) moiré superlattices. Scanning tunnelling microscopy reveals an average width of 2 nm and a typical bandgap of ~1 eV for similar GNRs grown on conducting graphite substrates. Fully atomistic computational simulations support the experimental results and reveal a competition between the formation of GNRs and carbon nanotubes (CNTs) during the nucleation stage, and van der Waals sliding of the GNRs on the h-BN substrate throughout the growth stage. Our study provides a scalable, single-step method for growing micrometre-long narrow GNRs on insulating substrates, thus opening a route to explore the performance of high-quality GNR devices and the fundamental physics of 1D moiré superlattices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源