论文标题

基于聚类的域适应性深层识别

Deep face recognition with clustering based domain adaptation

论文作者

Wang, Mei, Deng, Weihong

论文摘要

尽管深度卷积神经网络(CNN)在面部识别任务中取得了长足的进步,但这些模型在现实世界任务中经常面临挑战,在现实世界任务中,由于不同的照明条件,姿势和图像质量,从互联网收集的训练图像与测试图像不同。这些因素增加了训练(源域)和测试(目标域)数据库之间的领域差异,并使学习模型在应用中脱颖而出。同时,由于缺乏标记的目标数据,直接调整了前线模型变得棘手且不切实际。在本文中,我们提出了一种新的基于聚类的域适应方法,设计用于面部识别任务,其中源和目标域不共享任何类。我们的方法通过将特征域对齐全球范围,并在此期间有效地学习歧视目标特征,并在本地区分目标群集。具体而言,它首先通过最大程度地减少全局域差异以减少域间隙,从而学习一种更可靠的表示形式,然后应用简化的光谱群集方法来在域不变特征空间中生成伪标记,并最终学习歧视性目标表示。关于广泛使用的GBU,IJB-A/B/C和RFW数据库的全面实验清楚地证明了我们新提出的方法的有效性。 GBU数据集的最先进性能是通过仅从目标培训数据中的无监督的适应来实现的。

Despite great progress in face recognition tasks achieved by deep convolution neural networks (CNNs), these models often face challenges in real world tasks where training images gathered from Internet are different from test images because of different lighting condition, pose and image quality. These factors increase domain discrepancy between training (source domain) and testing (target domain) database and make the learnt models degenerate in application. Meanwhile, due to lack of labeled target data, directly fine-tuning the pre-learnt models becomes intractable and impractical. In this paper, we propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes. Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally. Specifically, it first learns a more reliable representation for clustering by minimizing global domain discrepancy to reduce domain gaps, and then applies simplified spectral clustering method to generate pseudo-labels in the domain-invariant feature space, and finally learns discriminative target representation. Comprehensive experiments on widely-used GBU, IJB-A/B/C and RFW databases clearly demonstrate the effectiveness of our newly proposed approach. State-of-the-art performance of GBU data set is achieved by only unsupervised adaptation from the target training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源