论文标题

(DE-)决策残端合奏的随机平滑

(De-)Randomized Smoothing for Decision Stump Ensembles

论文作者

Horváth, Miklós Z., Müller, Mark Niklas, Fischer, Marc, Vechev, Martin

论文摘要

基于树的模型用于许多高风险的应用领域,例如金融和医学,在鲁棒性和可解释性最重要的情况下。然而,与关注神经网络的人相比,改善和证明其鲁棒性的方法是严重探索的。针对这一重要挑战,我们为决策树桩合奏提出了确定性的平滑。尽管随机平滑的大多数先前的工作都集中在评估大约输入随机化的任意基础模型上,但我们工作的关键见解是决策残障集合可以通过动态编程实现精确但有效的评估。重要的是,我们获得了确定性的鲁棒性证书,甚至是在数字和分类特征上共同获得的,这是现实世界中无处不在的设置。此外,我们得出了一种在随机化下平滑决策的MLE最佳训练方法,并提出了两种提升方法以提高其可证明的鲁棒性。对计算机视觉和表格数据任务的广泛的实验评估表明,与基于树模型的最先进的方法相比,我们的方法的认证精度明显更高。我们在https://github.com/eth-sri/drs上发布所有代码和训练有素的模型。

Tree-based models are used in many high-stakes application domains such as finance and medicine, where robustness and interpretability are of utmost importance. Yet, methods for improving and certifying their robustness are severely under-explored, in contrast to those focusing on neural networks. Targeting this important challenge, we propose deterministic smoothing for decision stump ensembles. Whereas most prior work on randomized smoothing focuses on evaluating arbitrary base models approximately under input randomization, the key insight of our work is that decision stump ensembles enable exact yet efficient evaluation via dynamic programming. Importantly, we obtain deterministic robustness certificates, even jointly over numerical and categorical features, a setting ubiquitous in the real world. Further, we derive an MLE-optimal training method for smoothed decision stumps under randomization and propose two boosting approaches to improve their provable robustness. An extensive experimental evaluation on computer vision and tabular data tasks shows that our approach yields significantly higher certified accuracies than the state-of-the-art for tree-based models. We release all code and trained models at https://github.com/eth-sri/drs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源