论文标题
Turán数字$ t(n,5,3)$和图形没有诱导的$ 5 $ -CYCLE
Turán numbers $T(n,5,3)$ and graphs without induced $5$-cycles
论文作者
论文摘要
Turán数字$ t(n,5,3)$是从$ n $元素的$ x $ x $ x $ x $ ements的三元组系统的最小尺寸,以便$ x $中的每个Quintuple都包含系统中的三倍。 $ t(n,5,3)$的确切值以$ n \ leq 17 $而闻名。 Turán猜想$ t(2M,5,3)= 2 \ binom {m} {3} $,到目前为止尚未发现反例。如果此猜想是正确的,则$ t(2m+1,5,3)\ geq \ lceil m(M-2)(2m+1)/6 \ rceil $。我们证明了所有$ n = 2M+1> 17 $的匹配上限,但$ n = 27 $。
Turán number $T(n,5,3)$ is the minimum size of a system of triples out of a base set $X$ of $n$ elements such that every quintuple in $X$ contains a triple from the system. The exact values of $T(n,5,3)$ are known for $n \leq 17$. Turán conjectured that $T(2m,5,3) = 2\binom{m}{3}$, and no counterexamples have been found so far. If this conjecture is true, then $T(2m+1,5,3) \geq \lceil m(m-2)(2m+1)/6\rceil$. We prove the matching upper bound for all $n = 2m+1 > 17$ except $n=27$.