论文标题
回火如何修复贝叶斯神经网络中的数据增强
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
论文作者
论文摘要
虽然贝叶斯神经网络(BNN)提供了标准神经网络的声音和原则性替代方案,但通常需要应用后验的人工锐化以达到可比的性能。这与理论形成了鲜明的对比,指出鉴于有足够的先验和明确的模型,未熟练的贝叶斯后部应实现最佳性能。尽管社区做出了广泛的努力,但观察到的绩效收益仍然存在争议,该原因指向其起源的几个合理原因。尽管数据扩展已被经验被认为是这种效果的主要驱动因素之一,但另一方面,其作用的理论描述在很大程度上是缺失的。在这项工作中,我们确定了两个交织的因素,同时影响了冷后效应的强度,即增强的相关性质以及所采用模型与这种转变的不变性程度。通过理论上分析简化的设置,我们证明,降低降低了由I.I.D.建模增强而引起的错误指定。数据。温度模仿有效样本量的作用,反映了增强提供的信息的增益。我们通过广泛的经验评估来证实我们的理论发现,并扩展到现实的BNN。通过依靠小组卷积的框架,我们尝试了不同固有程度不变性的模型,从而确认了其与最佳温度的假设关系。
While Bayesian neural networks (BNNs) provide a sound and principled alternative to standard neural networks, an artificial sharpening of the posterior usually needs to be applied to reach comparable performance. This is in stark contrast to theory, dictating that given an adequate prior and a well-specified model, the untempered Bayesian posterior should achieve optimal performance. Despite the community's extensive efforts, the observed gains in performance still remain disputed with several plausible causes pointing at its origin. While data augmentation has been empirically recognized as one of the main drivers of this effect, a theoretical account of its role, on the other hand, is largely missing. In this work we identify two interlaced factors concurrently influencing the strength of the cold posterior effect, namely the correlated nature of augmentations and the degree of invariance of the employed model to such transformations. By theoretically analyzing simplified settings, we prove that tempering implicitly reduces the misspecification arising from modeling augmentations as i.i.d. data. The temperature mimics the role of the effective sample size, reflecting the gain in information provided by the augmentations. We corroborate our theoretical findings with extensive empirical evaluations, scaling to realistic BNNs. By relying on the framework of group convolutions, we experiment with models of varying inherent degree of invariance, confirming its hypothesized relationship with the optimal temperature.