论文标题

DeepSat:SAT的EDA驱动的学习框架

DeepSAT: An EDA-Driven Learning Framework for SAT

论文作者

Li, Min, Shi, Zhengyuan, Lai, Qiuxia, Khan, Sadaf, Cai, Shaowei, Xu, Qiang

论文摘要

我们介绍了DeepSat,这是一个新颖的端到端学习框架,用于布尔值满意度(SAT)问题。与在随机的SAT实例中接受相对较弱的监督培训的现有解决方案不同,我们建议应用发达的电子设计自动化(EDA)领域的知识进行SAT解决。具体而言,我们首先诉诸逻辑合成算法,以预处理SAT实例为优化和逆变器图(AIG)。通过这样做,可以大大降低各种SAT实例之间的分布多样性,从而有助于提高学习模型的概括能力。接下来,我们认为SAT解决方案的分布是有条件的Bernoulli分布的产物。基于此观察结果,我们使用条件生成模型近似SAT求解程序,利用新型的定向无环神经网络(DAGNN),具有两个极性原型用于条件SAT建模。为了有效地训练生成模型,借助逻辑模拟工具,我们获得了AIG中节点的概率为逻辑“ 1”作为丰富的监督。我们就各种SAT问题进行了全面的实验。我们的结果表明,DeepSat对基于最先进的学习SAT解决方案实现了明显的准确性改进,尤其是当概括为相对较大或具有多样化的SAT实例时。

We present DeepSAT, a novel end-to-end learning framework for the Boolean satisfiability (SAT) problem. Unlike existing solutions trained on random SAT instances with relatively weak supervision, we propose applying the knowledge of the well-developed electronic design automation (EDA) field for SAT solving. Specifically, we first resort to logic synthesis algorithms to pre-process SAT instances into optimized and-inverter graphs (AIGs). By doing so, the distribution diversity among various SAT instances can be dramatically reduced, which facilitates improving the generalization capability of the learned model. Next, we regard the distribution of SAT solutions being a product of conditional Bernoulli distributions. Based on this observation, we approximate the SAT solving procedure with a conditional generative model, leveraging a novel directed acyclic graph neural network (DAGNN) with two polarity prototypes for conditional SAT modeling. To effectively train the generative model, with the help of logic simulation tools, we obtain the probabilities of nodes in the AIG being logic `1' as rich supervision. We conduct comprehensive experiments on various SAT problems. Our results show that, DeepSAT achieves significant accuracy improvements over state-of-the-art learning-based SAT solutions, especially when generalized to SAT instances that are relatively large or with diverse distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源