论文标题

茴香:基于组装的神经隐式表面重建

ANISE: Assembly-based Neural Implicit Surface rEconstruction

论文作者

Petrov, Dmitry, Gadelha, Matheus, Mech, Radomir, Kalogerakis, Evangelos

论文摘要

我们提出了芳香,一种使用部分意识的神经隐式形状表示,从部分观测(图像或稀疏点云)中重建3D〜形状的方法。该形状是作为神经隐式函数的组装而配制的,每个函数代表不同的部分实例。与以前的方法相反,该表示形式的预测以粗略的方式进行。我们的模型首先以其部分实例的几何变换形式重建形状的结构排列。该模型在它们的条件下预测了编码其表面几何形状的部分潜在代码。重建可以通过两种方式获得:(i)直接将零件的潜在代码解码到部分隐式函数,然后将它们组合到最终形状中;或(ii)使用零件潜伏在零件数据库中检索类似的零件实例,并以单个形状组装它们。我们证明,在通过将部分表示为隐性功能进行重新构造时,我们的方法可以从图像和稀疏点云中获得最新的部分意识重建。当从数据集中检索的零件组装零件时,我们的方法可以显着超过传统的形状回收方法,即使可以限制数据尺寸。我们介绍了众所周知的稀疏点云重建和单视为重建基准的结果。

We present ANISE, a method that reconstructs a 3D~shape from partial observations (images or sparse point clouds) using a part-aware neural implicit shape representation. The shape is formulated as an assembly of neural implicit functions, each representing a different part instance. In contrast to previous approaches, the prediction of this representation proceeds in a coarse-to-fine manner. Our model first reconstructs a structural arrangement of the shape in the form of geometric transformations of its part instances. Conditioned on them, the model predicts part latent codes encoding their surface geometry. Reconstructions can be obtained in two ways: (i) by directly decoding the part latent codes to part implicit functions, then combining them into the final shape; or (ii) by using part latents to retrieve similar part instances in a part database and assembling them in a single shape. We demonstrate that, when performing reconstruction by decoding part representations into implicit functions, our method achieves state-of-the-art part-aware reconstruction results from both images and sparse point clouds.When reconstructing shapes by assembling parts retrieved from a dataset, our approach significantly outperforms traditional shape retrieval methods even when significantly restricting the database size. We present our results in well-known sparse point cloud reconstruction and single-view reconstruction benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源