论文标题

具有非lipschitz系数的随机微分方程的向后欧拉方法

Backward Euler method for stochastic differential equations with non-Lipschitz coefficients

论文作者

Zhou, Hao, Hu, Yaozhong, Liu, Yanghui

论文摘要

我们研究了传统的向后欧拉方法,用于$ m $ $二维的随机微分方程,该方程是由布朗尼运动的分数运动驱动的,其漂移系数满足单方面的Lipschitz条件。向后的Euler方案被证明是$ 1 $,通过显示渐近误差分布结果,此速率是最佳的。进行了两个数值实验,以验证我们对收敛速率最佳性的主张。

We study the traditional backward Euler method for $m$-dimensional stochastic differential equations driven by fractional Brownian motion with Hurst parameter $H > 1/2$ whose drift coefficient satisfies the one-sided Lipschitz condition. The backward Euler scheme is proved to be of order $1$ and this rate is optimal by showing the asymptotic error distribution result. Two numerical experiments are performed to validate our claims about the optimality of the rate of convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源