论文标题
随机螺旋链中的拓扑指数
Topological indices in Random Spiro Chains
论文作者
论文摘要
在本文中,我们通过Martingale方法研究随机螺旋链中的拓扑指数。在其中获得了确切分布,期望值和方差的明确分析表达式。随着n到达无限,随机螺旋链拓扑指数的渐近正态性是通过Martingale Central Limit定理建立的。特别是,我们计算了Nirmala,Sombor,Randic和Zagreb指数,以进行随机螺旋链以及它们的比较分析。
In this paper, we study topological indices in random spiro chains via a martingale approach. In which their explicit analytical expressions of the exact distribution, expected value and variance are obtained. As n goes to infinity, the asymptotic normality of topological indices of a random spiro chain is established through the Martingale Central Limit Theorem. In particular, we compute the Nirmala, Sombor, Randic and Zagreb index for a random spiro chain along with their comparative analysis.