论文标题

与时间相关的变形问题的可区分求解器与接触

Differentiable solver for time-dependent deformation problems with contact

论文作者

Huang, Zizhou, Tozoni, Davi Colli, Gjoka, Arvi, Ferguson, Zachary, Schneider, Teseo, Panozzo, Daniele, Zorin, Denis

论文摘要

我们引入了一个通用的可区分求解器,以解决时间依赖性的变形问题,并引入了接触和摩擦。我们的方法使用有限的元素离散化,并具有高阶时间积分器,并加上最近提出的增量潜在接触方法来处理接触和摩擦力,以求解具有复杂几何形状的场景上的ODE和PDE受限的优化问题。它支持静态和动态问题以及相对于物理问题描述所涉及的所有物理参数的分化,其中包括形状,材料参数,摩擦参数和初始条件。我们的分析得出的伴随公式是有效的,在正向模拟上,小型开销(通常小于10%的非线性问题),并且与远期问题共享许多相似之处,从而可以重复使用现有正向模拟器代码的大部分。 我们在开源PolyFem库之上实施方法,并证明求解器对模拟结果和物理验证的塑造设计,初始条件优化以及材料估算的适用性。

We introduce a general differentiable solver for time-dependent deformation problems with contact and friction. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve ODE- and PDE-constrained optimization problems on scenes with complex geometry. It supports static and dynamic problems and differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters, and initial conditions. Our analytically derived adjoint formulation is efficient, with a small overhead (typically less than 10% for nonlinear problems) over the forward simulation, and shares many similarities with the forward problem, allowing the reuse of large parts of existing forward simulator code. We implement our approach on top of the open-source PolyFEM library and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and physical validations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源