论文标题
层状和湍流管流的回避分析
Resolvent Analysis of laminar and turbulent duct flows
论文作者
论文摘要
这项工作将分解分析用于通过矩形管道的不可压缩流,以识别这种流中存在的主要线性能量扩增机制。特别是,我们通过线性化navier来制定分解运算符 - 关于二维碱基/平均流量的stokes方程。层流基流仅具有非零流速度分量,而湍流案例表现出次级平均流量(Prandtl的第二类次级流)。分解算子的单数值分解允许鉴定与指定的流向波数和时间频率的最大能量扩增相对应的结构。回避分析对于用跨度均匀性分析壁结合流的分析是有益的,在这里,我们旨在探讨这些方法和发现如何在有限的跨度范围的空间域中扩展流动。我们研究线性能量放大机制(尤其是对谐波强迫的响应)如何随着纵横比(定义为管道宽度除以其高度)在一个(平方管道)和十个之间变化。我们还研究了二级流对线性能量扩增机制的影响,发现在不同的方向上,它可以增强或抑制放大。我们进一步研究了二次流如何改变强迫和响应模式的形状,从而导致最大线性能量扩增。
This work applies resolvent analysis to incompressible flow through a rectangular duct, in order to identify dominant linear energy-amplification mechanisms present in such flows. In particular, we formulate the resolvent operator from linearizing the Navier--Stokes equations about a two-dimensional base/mean flow. The laminar base flow only has a nonzero streamwise velocity component, while the turbulent case exhibits a secondary mean flow (Prandtl's secondary flow of the second kind). A singular value decomposition of the resolvent operator allows for the identification of structures corresponding to maximal energy amplification, for specified streamwise wavenumbers and temporal frequencies. Resolvent analysis has been fruitful for analysis of wall-bounded flows with spanwise homogeneity, and here we aim to explore how such methods and findings can extend for a flow in spatial domains of finite spanwise extent. We investigate how linear energy-amplification mechanisms (in particular the response to harmonic forcing) change in magnitude and structure as the aspect ratio (defined as the duct width divided by its height) varies between one (a square duct) and ten. We additionally study the effect that secondary flow has on linear energy-amplification mechanisms, finding that in different regimes it can either enhance or suppress amplification. We further investigate how the secondary flow alters the forcing and response mode shapes leading to maximal linear energy amplification.