论文标题

采取积极主动的ML方法检测后门毒物样品

Towards A Proactive ML Approach for Detecting Backdoor Poison Samples

论文作者

Qi, Xiangyu, Xie, Tinghao, Wang, Jiachen T., Wu, Tong, Mahloujifar, Saeed, Mittal, Prateek

论文摘要

对手可以通过将后门毒药样本引入培训数据集中,将后门嵌入深度学习模型中。在这项工作中,我们研究了如何检测这种毒药样本以减轻后门攻击的威胁。首先,我们发现了大多数先前工作后的事后工作流程,后卫被动地允许攻击继续进行,然后利用后攻击模型的特征来揭示毒药样本。我们透露,这种工作流程并不能完全利用防御者的能力,在许多情况下,在其上构建的防御管道很容易失败或性能退化。其次,我们建议通过促进积极的心态来进行范式转变,在该心态中,捍卫者积极参与整个模型训练和毒物检测管道,直接执行并放大了攻击后模型的独特特征,以促进毒药检测。基于此,我们制定了一个统一的框架,并提供了设计更强大和可推广的检测管道的实用见解。第三,我们介绍了混乱训练(CT)的技术,作为我们框架的具体实例化。 CT对已经中毒的数据集应用了额外的中毒攻击,在暴露后门模式检测的同时,积极地将良性相关性解耦。对4个数据集和14种攻击类型的经验评估验证了CT超过14个基线防御的优势。

Adversaries can embed backdoors in deep learning models by introducing backdoor poison samples into training datasets. In this work, we investigate how to detect such poison samples to mitigate the threat of backdoor attacks. First, we uncover a post-hoc workflow underlying most prior work, where defenders passively allow the attack to proceed and then leverage the characteristics of the post-attacked model to uncover poison samples. We reveal that this workflow does not fully exploit defenders' capabilities, and defense pipelines built on it are prone to failure or performance degradation in many scenarios. Second, we suggest a paradigm shift by promoting a proactive mindset in which defenders engage proactively with the entire model training and poison detection pipeline, directly enforcing and magnifying distinctive characteristics of the post-attacked model to facilitate poison detection. Based on this, we formulate a unified framework and provide practical insights on designing detection pipelines that are more robust and generalizable. Third, we introduce the technique of Confusion Training (CT) as a concrete instantiation of our framework. CT applies an additional poisoning attack to the already poisoned dataset, actively decoupling benign correlation while exposing backdoor patterns to detection. Empirical evaluations on 4 datasets and 14 types of attacks validate the superiority of CT over 14 baseline defenses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源