论文标题

Coxeter理论用于$ \ Mathbb {p}^r $的爆炸的曲线理论

Coxeter theory for curves on blowups of $\mathbb{P}^r$

论文作者

Dumitrescu, Olivia, Miranda, Rick

论文摘要

我们研究了对$ y_s^r $平稳的不可约理性曲线的研究,这是$ \ mathbb {p}^r $ at $ s $一般积分的一般爆炸,其正常捆绑包为直接的线条总和$ i $ $ $ i $,用于$ i \ in \ in \ in \ in \ in \ in \ in \ { - 1,1,0,1,1,1 \} $:$ curves $ curves。我们系统地利用了在$ y_s^r $中应用于曲线的Chow空间的Coxeter组的理论,该理论为我们提供了有用的双线形式,有助于公开$(i)$ - 曲线的属性。我们对标准Cremona转换的Weyl组(所有这些都是$(i)$ - 曲线)下的线条轨道(通过$ 1-i $点)特别感兴趣的:我们称这些$(i)$ - Weyl Lines。我们证明了与理解$(i)$ - 曲线是$(i)$ - Weyl Line有关的各种定理,这是通过双线性形式表示的数值标准。我们获得了$ r = 3 $的更强结果,在此我们证明了符合尖锐标准的Noether-type不平等现象。

We investigate the study of smooth irreducible rational curves in $Y_s^r$, a general blowup of $\mathbb{P}^r$ at $s$ general points, whose normal bundle splits as a direct sum of line bundles all of degree $i$, for $i \in \{-1,0,1\}$: we call these $(i)$-curves. We systematically exploit the theory of Coxeter groups applied to the Chow space of curves in $Y_s^r$, which provides us with a useful bilinear form that helps to expose properties of $(i)$-curves. We are particularly interested in the orbits of lines (through $1-i$ points) under the Weyl group of standard Cremona transformations (all of which are $(i)$-curves): we call these $(i)$-Weyl lines. We prove various theorems related to understanding when an $(i)$-curve is an $(i)$-Weyl line, via numerical criteria expressed in terms of the bilinear form. We obtain stronger results for $r=3$, where we prove a Noether-type inequality that gives a sharp criterion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源