论文标题
通过概率程序进行张量计划优化
Tensor Program Optimization with Probabilistic Programs
论文作者
论文摘要
随着我们在各种环境中部署深度学习,对张量程序的自动优化变得越来越重要,并且有效的优化依赖于丰富的搜索空间和有效的搜索。大多数现有的努力采用了一个搜索空间,该搜索空间缺乏有效地使域专家发展搜索空间的能力。本文介绍了Metaschedule,这是一种域特异性的概率编程语言抽象,以构建张量程序的丰富搜索空间。我们的抽象使域专家可以分析该程序,并以模块化的方式轻松提出随机选择,以相应地构成程序转换。我们还构建了一个端到端学习驱动的框架,以找到针对给定搜索空间的优化程序。实验结果表明,元策划可以以模块化方式覆盖最先进的张量程序优化框架中使用的搜索空间。此外,它赋予了域专家的能力,可以方便地扩大搜索空间并模块化增强系统,从而在端到端的深度学习工作负载上带来了48%的速度。
Automatic optimization for tensor programs becomes increasingly important as we deploy deep learning in various environments, and efficient optimization relies on a rich search space and effective search. Most existing efforts adopt a search space which lacks the ability to efficiently enable domain experts to grow the search space. This paper introduces MetaSchedule, a domain-specific probabilistic programming language abstraction to construct a rich search space of tensor programs. Our abstraction allows domain experts to analyze the program, and easily propose stochastic choices in a modular way to compose program transformation accordingly. We also build an end-to-end learning-driven framework to find an optimized program for a given search space. Experimental results show that MetaSchedule can cover the search space used in the state-of-the-art tensor program optimization frameworks in a modular way. Additionally, it empowers domain experts to conveniently grow the search space and modularly enhance the system, which brings 48% speedup on end-to-end deep learning workloads.