论文标题
社交网络中信仰的演变
Evolution of beliefs in social networks
论文作者
论文摘要
社会信仰的演变是社会中人们之间相互作用的产物(垂直传播)。研究人员分别研究了水平和垂直传播。扩展了先前的工作,我们提出了一个新的理论框架,该框架允许将工具从马尔可夫链理论应用到通过水平和垂直传播对信仰进化的分析。我们分析了三种情况:静态网络,随机变化的网络和基于同质的动态网络。前两个假设网络结构独立于信念,而后者则假设人们倾向于与那些具有相似信念的人进行交流。我们证明,在一般条件下,静态和随机变化的网络都会融合到所有个体中的一组信念以及收敛速度。我们证明,基于同质的网络结构一般不会融合到所有人共有的一组信念,并证明不同限制信念的数量是初始信念的函数。我们通过讨论对先前理论和未来工作的方向的影响来结束。
Evolution of beliefs of a society are a product of interactions between people (horizontal transmission) in the society over generations (vertical transmission). Researchers have studied both horizontal and vertical transmission separately. Extending prior work, we propose a new theoretical framework which allows application of tools from Markov chain theory to the analysis of belief evolution via horizontal and vertical transmission. We analyze three cases: static network, randomly changing network, and homophily-based dynamic network. Whereas the former two assume network structure is independent of beliefs, the latter assumes that people tend to communicate with those who have similar beliefs. We prove under general conditions that both static and randomly changing networks converge to a single set of beliefs among all individuals along with the rate of convergence. We prove that homophily-based network structures do not in general converge to a single set of beliefs shared by all and prove lower bounds on the number of different limiting beliefs as a function of initial beliefs. We conclude by discussing implications for prior theories and directions for future work.