论文标题

关于构建新的复曲量量子代码和量子爆发校正代码

On the Construction of New Toric Quantum Codes and Quantum Burst-Error Correcting Codes

论文作者

Trinca, Cibele Cristina, Interlando, J. Carmelo, Palazzo Jr., Reginaldo, de Andrade, Antonio Aparecido, Watanabe, Ricardo Augusto

论文摘要

这项工作中介绍了复的量子误差校正代码构建程序。 A new class of an infinite family of toric quantum codes is provided by constructing a classical cyclic code on the square lattice $\mathbb{Z}_{q}\times \mathbb{Z}_{q}$ for all odd integers $q\geq 5$ and, consequently, new toric quantum codes are constructed on such square lattices regardless of whether $q$ can be表示为两个正方形。此外,这项工作为每个$ q $提供的polyoMino形状呈镶嵌相应的平方晶格,因此,将晶格$ \ mathbb {z}^{2} $铺平。这些构建的复式量子代码未考虑的通道是对称的,因为$ \ mathbb {z}^{2} $ - lattice是自动的。此外,我们通过使用构造的复型量子代码提出了一种量子交织技术,该技术表明,代码速率和编码增益比Kitaev $ q = 2n+1 $ $ n \ egeq 2 $和torics of torics of torics of bombin和bombin的代码速率和Kitaev型折叠量子代码的代码速率和编码增益更好。除了提出的量子交织技术还可以改善此类参数外,还可以用于纠正位于位置的误差,存储量子数据和带有内存的量子通道。

A toric quantum error-correcting code construction procedure is presented in this work. A new class of an infinite family of toric quantum codes is provided by constructing a classical cyclic code on the square lattice $\mathbb{Z}_{q}\times \mathbb{Z}_{q}$ for all odd integers $q\geq 5$ and, consequently, new toric quantum codes are constructed on such square lattices regardless of whether $q$ can be represented as a sum of two squares. Furthermore this work supplies for each $q$ the polyomino shapes that tessellate the corresponding square lattices and, consequently, tile the lattice $\mathbb{Z}^{2}$. The channel without memory to be considered for these constructed toric quantum codes is symmetric, since the $\mathbb{Z}^{2}$-lattice is autodual. Moreover, we propose a quantum interleaving technique by using the constructed toric quantum codes which shows that the code rate and the coding gain of the interleaved toric quantum codes are better than the code rate and the coding gain of Kitaev's toric quantum codes for $q=2n+1$, where $n\geq 2$, and of an infinite class of Bombin and Martin-Delgado's toric quantum codes. In addition to the proposed quantum interleaving technique improves such parameters, it can be used for burst-error correction in errors which are located, quantum data stored and quantum channels with memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源