论文标题
庞加莱仪理论中的几何乘数和部分电触觉
Geometric multipliers and partial teleparallelism in Poincaré gauge theory
论文作者
论文摘要
扭转驱动的电触电理论的动力学仅是可行的,因为36个乘数场禁用Riemann--Cartan曲率的所有组件。我们通过考虑庞加莱仪理论来概括这种暗示的方法,其中可以调用60个这样的“几何乘数”来禁用曲率的任何不可还原部分,或者确实是扭转。由弱场分析激发的扭力理论经常在强场政权中受到不必要的动态,例如鬼魂的激活。通过考虑大规模,均等的传播 - 甚至矢量扭转,我们探讨了几何倍增器如何能够限制与弱场汉密尔顿约束结构的强场地,并考虑其树级现象。
The dynamics of the torsion-powered teleparallel theory are only viable because thirty-six multiplier fields disable all components of the Riemann--Cartan curvature. We generalise this suggestive approach by considering Poincaré gauge theory in which sixty such `geometric multipliers' can be invoked to disable any given irreducible part of the curvature, or indeed the torsion. Torsion theories motivated by a weak-field analysis frequently suffer from unwanted dynamics in the strong-field regime, such as the activation of ghosts. By considering the propagation of massive, parity-even vector torsion, we explore how geometric multipliers may be able to limit strong-field departures from the weak-field Hamiltonian constraint structure, and consider their tree-level phenomena.