论文标题

随机Volterra积分方程的尖峰变化

Spike Variations for Stochastic Volterra Integral Equations

论文作者

Wang, Tianxiao, Yong, Jiongmin

论文摘要

尖峰变化技术在得出多种类型的微分方程(包括普通微分方程(ODE),偏微分方程(PDES)和随机差分方程(SDES)的几种类型的微分方程的最佳控制方程中,最佳对照的最佳原理(SDE)在推导Pontryagin的类型最大原理中起着至关重要的作用。该技术还适用于(确定性远期)伏特拉内方程(FVIE)。很自然地期望这种技术可以扩展到(正向)随机Volterra积分方程(FSVIE)的情况。但是,通过模仿SDE的案例,人们遇到了处理涉及二次术语的重要困难。为了克服困难,我们引入了一个辅助过程,可以使用它可以使用ITô的公式,并采用线性季度随机最佳控制问题中使用的技巧。然后获得上述二次形式的合适表示,并得出二阶伴随方程。因此,建立了蓬松金类型的最大原则。也研究了一些相关扩展。

Spike variation technique plays a crucial role in deriving Pontryagin's type maximum principle of optimal controls for differential equations of several types, including ordinary differential equations (ODEs), partial differential equations (PDEs), and stochastic differentia equations (SDEs), when the control domains are not assumed to be convex. This technique also applies to (deterministic forward) Volterra intrgral equations (FVIEs). It is natural to expect that such a technique could be extended to the case of (forward) stochastic Volterra integral equations (FSVIEs). However, by mimicking the case of SDEs, one encounters an essential difficulty of handling an involved quadratic term. To overcome the difficulty, we introduce an auxiliary process for which one can use Itô's formula, and adopt a trick used in linear-quadratic stochastic optimal control problems. Then a suitable representation of the above-mentioned quadratic form is obtained, and the second order adjoint equations are derived. Consequently, the maximum principle of Pontryagin type is established. Some relevant extensions are investigated as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源