论文标题
通过非平滑控制Lyapunov函数进行随机稳定
On stochastic stabilization via non-smooth control Lyapunov functions
论文作者
论文摘要
控制Lyapunov功能是稳定的中心工具。它将抽象的能量函数(一种Lyapunov函数)概括为受控系统的情况。众所周知的事实是,大多数控制的Lyapunov函数都是非平滑的 - 在非全面系统中,例如车轮机器人和汽车也是如此。使用非平滑控制Lyapunov功能进行稳定的框架,例如Dini瞄准和最陡峭的下降。这项工作将相关结果推广到随机情况。作为基础工作,选择了采样控制方案,其中使用系统状态的离散测量在离散时刻计算控制动作。在这样的设置中,应特别注意控制Lyapunov功能的样本对样本行为。这里的一个特殊挑战是在系统上作用的随机噪声。这项工作的核心结果是一个定理,该定理大致指出,如果通常没有平滑的控制Lyapunov函数,则可以在样本和厚模式下实际稳定给定的随机动力学系统,这意味着在采样时间步骤中,控制动作保持恒定。选择的一种特定的控制方法是基于莫罗 - 耶西达(Moreau-Yosida)的正则化,换句话说是对照lyapunov函数的Inf-consonvolution,但总体框架可扩展到进一步的控制方案。假定几乎可以肯定地将系统噪声界定,尽管短暂地解决了无限噪声的情况。
Control Lyapunov function is a central tool in stabilization. It generalizes an abstract energy function -- a Lyapunov function -- to the case of controlled systems. It is a known fact that most control Lyapunov functions are non-smooth -- so is the case in non-holonomic systems, like wheeled robots and cars. Frameworks for stabilization using non-smooth control Lyapunov functions exist, like Dini aiming and steepest descent. This work generalizes the related results to the stochastic case. As the groundwork, sampled control scheme is chosen in which control actions are computed at discrete moments in time using discrete measurements of the system state. In such a setup, special attention should be paid to the sample-to-sample behavior of the control Lyapunov function. A particular challenge here is a random noise acting on the system. The central result of this work is a theorem that states, roughly, that if there is a, generally non-smooth, control Lyapunov function, the given stochastic dynamical system can be practically stabilized in the sample-and-hold mode meaning that the control actions are held constant within sampling time steps. A particular control method chosen is based on Moreau-Yosida regularization, in other words, inf-convolution of the control Lyapunov function, but the overall framework is extendable to further control schemes. It is assumed that the system noise be bounded almost surely, although the case of unbounded noise is briefly addressed.