论文标题
新的Hohlov型积分运算符,涉及Clausen的超几何功能
New Hohlov Type Integral Operator involving Clausen's Hypergeometric Functions
论文作者
论文摘要
我们考虑积分运算符$ \ MATHCAL {i}^{a,b,c} _ {d,e}(f)(z)(z)$涉及Clausen的超几何函数,该卷积功能是由Chandrasekran和Prabhakaran引入的卷积。参数$ a,b,c $的条件是使用积分运算符$ \ MathCal {i}^{a,\ frac {b} {2} {2},\ frac {b+1} {2}} {2}}} _ {\ frac {\ frac {c} {2} {2} {2} {2} {2} {2} {2},\ frac {c+Z}} {2} {2} {克劳森(Clausen)超几何函数的几何特性,用于单价函数的各种子类。
We consider the integral operator $\mathcal{I}^{a,b,c}_{d,e}(f)(z)$ involving Clausen's Hypergeometric Function by means of convolution introduced by Chandrasekran and Prabhakaran for investigation. The conditions on the parameters $ a,b, c$ are determined using the integral operator $\mathcal{I}^{a,\frac{b}{2},\frac{b+1}{2}}_{\frac{c}{2}, \frac{c+1}{2}}(f)(z)$ to study the geometric properties of Clausen's Hypergeometric Function for various subclasses of univalent functions.