论文标题
水下机器人车辆的基于神经网络的控制器
A neural network based controller for underwater robotic vehicles
论文作者
论文摘要
由于过去几十年中获得的巨大技术改进,因此可以使用机器人车进行水下勘探。这项工作描述了用于基于水下车辆的动态定位系统的开发。采用的方法是使用Lyapunov稳定性理论开发的,并通过基于神经网络的算法增强了不确定性和干扰补偿。通过数值模拟评估所提出的控制方案的性能。
Due to the enormous technological improvements obtained in the last decades it is possible to use robotic vehicles for underwater exploration. This work describes the development of a dynamic positioning system for remotely operated underwater vehicles based. The adopted approach is developed using Lyapunov Stability Theory and enhanced by a neural network based algorithm for uncertainty and disturbance compensation. The performance of the proposed control scheme is evaluated by means of numerical simulations.