论文标题

在极端曲线的斜坡不平等现象上

On the slope inequalities for extremal curves

论文作者

Beorchia, Valentina, Brundu, Michela

论文摘要

本文涉及一个问题,即T. Kato和G. Martens提出的射击R-Space中极端曲线的第三不平等。我们证明答案在许多情况下是负面的。结果是通过对极端曲线几何形状及其规范模型的几何形状进行的详细分析获得的。结果,我们表明,海骨表面上的特定曲线不会违反一定范围内的斜坡不等式。

The present paper concerns the question of the violation of the r-th inequality for extremal curves in the projective r-space, posed by T. Kato and G. Martens. We show that the answer is negative in many cases. The result is obtained by a detailed analysis of the geometry of extremal curves and their canonical model. As a consequence, we show that particular curves on a Hirzebruch surface do not violate the slope inequalities in a certain range.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源