论文标题
实际代数的3个小范围
Real algebraic overtwisted contact structures on 3-spheres
论文作者
论文摘要
3个速度中的一个真实代数链接定义为从$ \ mathbb {r}^4 $到$ \ mathbb {r}^2 $的实际代数函数的零基因座。根据定义,在三个球体上进行了真正的代数开放式书籍分解是这种真实代数函数的Milnor纤维,以防它存在。我们证明,在3个球员上的每个固定的接触结构都具有正面的三大不变$ d_3 $(除可能9个例外外)都是真正的代数。我们的施工特别表明,相关开放书籍的页面是平面。
A real algebraic link in the 3-sphere is defined as the zero locus in the 3-sphere of a real algebraic function from $\mathbb{R}^4$ to $\mathbb{R}^2$. A real algebraic open book decomposition on the 3-sphere is by definition the Milnor fibration of such a real algebraic function, in case it exists. We prove that every overtwisted contact structure on the 3-sphere with positive three dimensonal invariant $d_3$ (apart from possibly 9 exceptions) are real algebraic. Our construction shows in particular that the pages of the associated open books are planar.