论文标题
Reissner-Mindlin板的DPG方法
A DPG method for Reissner-Mindlin plates
论文作者
论文摘要
我们提出了一种不连续的彼得 - 盖尔金(DPG)方法,该方法具有最佳的Reissner-Mindlin板弯曲模型的最佳测试功能。我们的方法基于一种利用剪切力的Helmholtz分解的变分公式。它产生原始变量和弯矩的近似值。对于边界条件的任何规范选择,该方法会优化地收敛。在硬夹凸面板的情况下,我们证明了最低订单的方案是锁定的。几个数值实验证实了我们的结果。
We present a discontinuous Petrov-Galerkin (DPG) method with optimal test functions for the Reissner-Mindlin plate bending model. Our method is based on a variational formulation that utilizes a Helmholtz decomposition of the shear force. It produces approximations of the primitive variables and the bending moments. For any canonical selection of boundary conditions the method converges quasi-optimally. In the case of hard-clamped convex plates, we prove that the lowest-order scheme is locking free. Several numerical experiments confirm our results.