论文标题

使用拓扑优化的树木重建

Tree Reconstruction using Topology Optimisation

论文作者

Lowe, Thomas, Pinskier, Joshua

论文摘要

从扫描环境中生成准确的数字树模型对于识别生物量,跌落危害和遍历性以及动画和游戏等数字应用等任务中的林业,农业和其他户外行业都是无价的。树木重建的现有方法依赖于特征识别(树干,冠等)将森林分割成单个树并生成分支结构图,从而将其应用于稀疏的树木和统一的森林。但是,自然世界是一个凌乱的地方,树木具有明显的异质性,并且经常被周围环境所侵占。我们提出了一种从点云数据中提取树木的分支结构的一般方法,该方法通过调整结构拓扑优化的方法来估算树木的结构,以找到最佳的材料分布以支持风加载。我们介绍了这种优化对各种扫描的优化的结果,并讨论了这种新颖的树结构重建方法的好处和缺点。尽管包含树的数据集的差异很高,并且闭塞率很高,但在大多数情况下,我们的方法仍会生成详细而准确的树结构。

Generating accurate digital tree models from scanned environments is invaluable for forestry, agriculture, and other outdoor industries in tasks such as identifying biomass, fall hazards and traversability, as well as digital applications such as animation and gaming. Existing methods for tree reconstruction rely on feature identification (trunk, crown, etc) to heuristically segment a forest into individual trees and generate a branch structure graph, limiting their application to sparse trees and uniform forests. However, the natural world is a messy place in which trees present with significant heterogeneity and are frequently encroached upon by the surrounding environment. We present a general method for extracting the branch structure of trees from point cloud data, which estimates the structure of trees by adapting the methods of structural topology optimisation to find the optimal material distribution to support wind-loading. We present the results of this optimisation over a wide variety of scans, and discuss the benefits and drawbacks of this novel approach to tree structure reconstruction. Despite the high variability of datasets containing trees, and the high rate of occlusions, our method generates detailed and accurate tree structures in most cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源