论文标题

通过局部维度估计分析GAN的潜在空间

Analyzing the Latent Space of GAN through Local Dimension Estimation

论文作者

Choi, Jaewoong, Hwang, Geonho, Cho, Hyunsoo, Kang, Myungjoo

论文摘要

基于风格的甘恩(Stylegans)在高保真图像合成中取得了令人印象深刻的成功,促使研究以了解其潜在空间的语义特性。在本文中,我们通过将潜在空间作为多种多样的几何分析来解决此问题。特别是,我们提出了预先训练的GAN模型中任意中间层的局部维度估计算法。估计的局部维度被解释为该潜在变量可能的语义变化数量。此外,这种内在维度估计可以使无监督的潜在空间分离评估。我们提出的称为扭曲的指标衡量了在学习的潜在空间上内在切线空间的不一致性。失真纯粹是几何形状,不需要任何其他属性信息。然而,失真显示与全球基础兼容性和监督分离得分有很高的相关性。我们的工作是在没有属性标签的GAN中选择最脱的潜在空间的第一步。

The impressive success of style-based GANs (StyleGANs) in high-fidelity image synthesis has motivated research to understand the semantic properties of their latent spaces. In this paper, we approach this problem through a geometric analysis of latent spaces as a manifold. In particular, we propose a local dimension estimation algorithm for arbitrary intermediate layers in a pre-trained GAN model. The estimated local dimension is interpreted as the number of possible semantic variations from this latent variable. Moreover, this intrinsic dimension estimation enables unsupervised evaluation of disentanglement for a latent space. Our proposed metric, called Distortion, measures an inconsistency of intrinsic tangent space on the learned latent space. Distortion is purely geometric and does not require any additional attribute information. Nevertheless, Distortion shows a high correlation with the global-basis-compatibility and supervised disentanglement score. Our work is the first step towards selecting the most disentangled latent space among various latent spaces in a GAN without attribute labels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源