论文标题
在指数二苯胺方程$(f_ {m+1}^{(k)})^x-(f_ {m-1}^{(k)})^x = f_n^{(k)} $
On the Exponential Diophantine Equation $(F_{m+1}^{(k)})^x-(F_{m-1}^{(k)})^x = F_n^{(k)}$
论文作者
论文摘要
在本文中,我们使用对数中线性形式的下限和持续分数的属性使用下限,明确地找到标题Diophantine方程的所有解决方案。此外,由于Dujella和Pethö,我们在Diophantine近似中使用了Baker-Davenport减少方法的版本。本文扩展了\ cite {patel}的先前工作。
In this paper, we explicitly find all solutions of the title Diophantine equation, using lower bounds for linear forms in logarithms and properties of continued fractions. Further, we use a version of the Baker-Davenport reduction method in Diophantine approximation, due to Dujella and Pethö. This paper extends the previous work of \cite{Patel}.