论文标题

位置:张量网络是绿色AI的宝贵资产

Position: Tensor Networks are a Valuable Asset for Green AI

论文作者

Memmel, Eva, Menzen, Clara, Schuurmans, Jetze, Wesel, Frederiek, Batselier, Kim

论文摘要

该立场论文首次介绍了张量网络(TNS)和绿色AI之间的基本联系,突出了它们的协同潜力,以增强AI研究的包容性和可持续性。我们认为,由于TNS由于其强大的数学骨干和固有的对数压缩潜力,因此对于绿色AI很有价值。我们对正在进行的有关绿色AI的讨论进行了全面的审查,强调了AI研究中可持续性和包容性的重要性,以证明建立绿色AI与TNS之间的联系的重要性。为了支持我们的立场,我们首先提供了绿色AI文献中提出的效率指标的全面概述,然后评估了内核机器中TNS的实例,并使用拟议的效率指标进行了深入学习。该立场论文旨在通过弥合绿色AI和TNS的基本原则来激励有意义的建设性讨论。我们倡导研究人员认真评估TNS整合其研究项目,并与本文建立的链接保持一致,我们支持先前的呼吁,鼓励研究人员将绿色AI原则视为研究的优先事项。

For the first time, this position paper introduces a fundamental link between tensor networks (TNs) and Green AI, highlighting their synergistic potential to enhance both the inclusivity and sustainability of AI research. We argue that TNs are valuable for Green AI due to their strong mathematical backbone and inherent logarithmic compression potential. We undertake a comprehensive review of the ongoing discussions on Green AI, emphasizing the importance of sustainability and inclusivity in AI research to demonstrate the significance of establishing the link between Green AI and TNs. To support our position, we first provide a comprehensive overview of efficiency metrics proposed in Green AI literature and then evaluate examples of TNs in the fields of kernel machines and deep learning using the proposed efficiency metrics. This position paper aims to incentivize meaningful, constructive discussions by bridging fundamental principles of Green AI and TNs. We advocate for researchers to seriously evaluate the integration of TNs into their research projects, and in alignment with the link established in this paper, we support prior calls encouraging researchers to treat Green AI principles as a research priority.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源