论文标题

在平均野外游戏中学习:调查

Learning in Mean Field Games: A Survey

论文作者

Laurière, Mathieu, Perrin, Sarah, Pérolat, Julien, Girgin, Sertan, Muller, Paul, Élie, Romuald, Geist, Matthieu, Pietquin, Olivier

论文摘要

具有很多玩家的非合作和合作游戏具有许多应用程序,但是当玩家数量增加时,通常仍然很棘手。由Lasry和Lions以及Huang,Caines和Malhamé,Mean Field Games(MFGS)介绍的依靠平均场外近似值,以使玩家数量成长为Infinity。解决这些游戏的传统方法通常依赖于以完全了解模型的了解来求解部分或随机微分方程。最近,增强学习(RL)似乎有望在大规模上解决复杂问题。 RL和MFGS的组合有望在人口规模和环境复杂性方面大规模解决游戏。在这项调查中,我们回顾了有关MFG中学习均衡和社会优势的RL方法的近期文献。我们首先确定MFG的最常见设置(静态,固定和演变)。然后,我们为经典迭代方法(基于最佳响应计算或策略评估)提供了一个通用框架,以确切的方式解决MFG。在这些算法和与马尔可夫决策过程的联系的基础上,我们解释了如何使用RL以无模型的方式学习MFG解决方案。最后,我们在基准问题上介绍了数值插图,并以某些观点得出结论。

Non-cooperative and cooperative games with a very large number of players have many applications but remain generally intractable when the number of players increases. Introduced by Lasry and Lions, and Huang, Caines and Malhamé, Mean Field Games (MFGs) rely on a mean-field approximation to allow the number of players to grow to infinity. Traditional methods for solving these games generally rely on solving partial or stochastic differential equations with a full knowledge of the model. Recently, Reinforcement Learning (RL) has appeared promising to solve complex problems at scale. The combination of RL and MFGs is promising to solve games at a very large scale both in terms of population size and environment complexity. In this survey, we review the quickly growing recent literature on RL methods to learn equilibria and social optima in MFGs. We first identify the most common settings (static, stationary, and evolutive) of MFGs. We then present a general framework for classical iterative methods (based on best-response computation or policy evaluation) to solve MFGs in an exact way. Building on these algorithms and the connection with Markov Decision Processes, we explain how RL can be used to learn MFG solutions in a model-free way. Last, we present numerical illustrations on a benchmark problem, and conclude with some perspectives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源