论文标题

这些地图是为步行而制作的:移动机器人的实时地形财产估算

These Maps Are Made For Walking: Real-Time Terrain Property Estimation for Mobile Robots

论文作者

Ewen, Parker, Li, Adam, Chen, Yuxin, Hong, Steven, Vasudevan, Ram

论文摘要

控制移动机器人的运动方程取决于地形特性,例如摩擦系数和接触模型参数。因此,估计这些特性对于机器人导航至关重要。理想情况下,任何估计地形特性的地图都应实时运行,减轻传感器噪声,并提供上述属性的概率分布,从而实现风险减轻导航和计划。本文解决了这些需求,并提出了一个用于语义映射的贝叶斯推理框架,该框架递归地估算了地形表面轮廓和使用单个RGB-D摄像机的数据的地形特性概率分布。在模拟中,针对其他语义映射方法评估了所提出的框架,并显示出使用Precision-Recall曲线和Kullback-Leibler-liibler Divergence divergence测试进行评估时,根据正确估计模拟的基地形地形特性的表现优于这些最先进的方法。此外,所提出的方法在室内和室外环境中都部署在物理腿部机器人平台上,我们显示我们的方法在两种情况下都正确预测了地形特性。所提出的框架实时运行,并包括一个可轻松集成的ROS界面。

The equations of motion governing mobile robots are dependent on terrain properties such as the coefficient of friction, and contact model parameters. Estimating these properties is thus essential for robotic navigation. Ideally any map estimating terrain properties should run in real time, mitigate sensor noise, and provide probability distributions of the aforementioned properties, thus enabling risk-mitigating navigation and planning. This paper addresses these needs and proposes a Bayesian inference framework for semantic mapping which recursively estimates both the terrain surface profile and a probability distribution for terrain properties using data from a single RGB-D camera. The proposed framework is evaluated in simulation against other semantic mapping methods and is shown to outperform these state-of-the-art methods in terms of correctly estimating simulated ground-truth terrain properties when evaluated using a precision-recall curve and the Kullback-Leibler divergence test. Additionally, the proposed method is deployed on a physical legged robotic platform in both indoor and outdoor environments, and we show our method correctly predicts terrain properties in both cases. The proposed framework runs in real-time and includes a ROS interface for easy integration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源