论文标题

DH-GAN:使用数字全息图3D显微镜成像的物理驱动的未经训练的生成对抗网络

DH-GAN: A Physics-driven Untrained Generative Adversarial Network for 3D Microscopic Imaging using Digital Holography

论文作者

Chen, Xiwen, Wang, Hao, Razi, Abolfazl, Kozicki, Michael, Mann, Christopher

论文摘要

数字全息图是一种3D成像技术,它通过将激光束带到对象上并测量衍射波形的强度,称为全息图。对象的3D形状可以通过对捕获的全息图的数值分析并恢复发生的相位来获得。最近,深度学习(DL)方法已被用于更准确的全息处理。但是,大多数监督方法都需要大型数据集来训练该模型,由于样本或隐私问题的缺乏,大多数DH应用程序都很少获得。有几种基于DL的恢复方法,不依赖配对图像的大数据集。尽管如此,这些方法中的大多数经常忽略控制波传播的基本物理法。这些方法提供了一个黑盒操作,无法解释,可推广和转移到其他样本和应用程序。在这项工作中,我们提出了一种基于生成对抗网络的新DL体系结构,该架构使用歧视网络来实现重建质量的语义度量,同时使用生成网络作为函数近似值,以建模全息图的倒数。我们使用模拟退火驱动的渐进屏蔽模块将恢复图像的背景部分强加于恢复图像的背景部分,以增强重建质量。所提出的方法是一种表现出高传递性对类似样品的可传递性的方法之一,该方法促进了其在时间敏感应用中的快速部署,而无需重新培训网络。结果表明,重建质量(约5 dB PSNR增益)和噪声的鲁棒性(PSNR与噪声增加率降低约50%)的竞争者方法有了显着改善。

Digital holography is a 3D imaging technique by emitting a laser beam with a plane wavefront to an object and measuring the intensity of the diffracted waveform, called holograms. The object's 3D shape can be obtained by numerical analysis of the captured holograms and recovering the incurred phase. Recently, deep learning (DL) methods have been used for more accurate holographic processing. However, most supervised methods require large datasets to train the model, which is rarely available in most DH applications due to the scarcity of samples or privacy concerns. A few one-shot DL-based recovery methods exist with no reliance on large datasets of paired images. Still, most of these methods often neglect the underlying physics law that governs wave propagation. These methods offer a black-box operation, which is not explainable, generalizable, and transferrable to other samples and applications. In this work, we propose a new DL architecture based on generative adversarial networks that uses a discriminative network for realizing a semantic measure for reconstruction quality while using a generative network as a function approximator to model the inverse of hologram formation. We impose smoothness on the background part of the recovered image using a progressive masking module powered by simulated annealing to enhance the reconstruction quality. The proposed method is one of its kind that exhibits high transferability to similar samples, which facilitates its fast deployment in time-sensitive applications without the need for retraining the network. The results show a considerable improvement to competitor methods in reconstruction quality (about 5 dB PSNR gain) and robustness to noise (about 50% reduction in PSNR vs noise increase rate).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源