论文标题
不当伊瓦泽的融合继续分数
Convergence of improper Iwasawa Continued Fractions
论文作者
论文摘要
我们证明了一系列持续的分数的融合,包括对四元组和八元的一般性分数。这些系统中的分数点没有远离单位球体,因此迭代图并不均匀扩展。我们通过分析数字序列的数字序列来绕过此问题,该序列的点在迭代下汇合到单位球体,从而扩展了以前的Dani-Nogueira方法。
We prove the convergence of a wide class of continued fractions, including generalized continued fractions over quaternions and octonions. Fractional points in these systems are not bounded away from the unit sphere, so that the iteration map is not uniformly expanding. We bypass this problem by analyzing digit sequences for points that converge to the unit sphere under iteration, expanding on previous methods of Dani-Nogueira.