论文标题

机器学习杜特隆:新的体系结构和不确定性量化

Machine learning the deuteron: new architectures and uncertainty quantification

论文作者

Sarmiento, J Rozalén, Keeble, J W T, Rios, A

论文摘要

我们使用差异神经网络ANSATZ在动量空间中的波函数解决了迪特龙的基态。此ANSATZ提供了$ S $和$ d $状态的灵活表示,其能量的相对错误,其分数为完全对角线基准的比例。我们在两个方向上扩展了该区域的先前工作。首先,我们通过在网络中添加更多层以及探索各州之间的不同连接来研究新体系结构。其次,我们通过考虑最小化过程结束时的最终振荡来更好地估计数值不确定性。总体而言,我们发现表现最好的体系结构是简单的单层,独立的网络。两层网络在未通过执行计算的固定动量基础探测的区域中显示出过度拟合的指示。在所有情况下,与实际最小值周围模型振荡相关的误差都大于随机初始化不确定性。我们得出的结论可以推广到其他量子力学设置。

We solve the ground state of the deuteron using a variational neural network ansatz for the wave function in momentum space. This ansatz provides a flexible representation of both the $S$ and the $D$ states, with relative errors in the energy which are within fractions of a percent of a full diagonalisation benchmark. We extend the previous work on this area in two directions. First, we study new architectures by adding more layers to the network and by exploring different connections between the states. Second, we provide a better estimate of the numerical uncertainty by taking into account the final oscillations at the end of the minimisation process. Overall, we find that the best performing architecture is the simple one-layer, state-independent network. Two-layer networks show indications of overfitting, in regions that are not probed by the fixed momentum basis where calculations are performed. In all cases, the error associated to the model oscillations around the real minimum is larger than the stochastic initialisation uncertainties. The conclusions that we draw can be generalised to other quantum mechanics settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源