论文标题

紧凑的Hölder缩回和最近的点图

Compact Hölder retractions and nearest point maps

论文作者

Medina, Rubén

论文摘要

在本文中,证明了有关均匀连续缩回的两个主要结果。首先,$α$-Hölder从任何可分开的Banach空间回收到紧凑型凸子集的封闭线性跨度是整个空间,该空间都是为每个正$α<1 $构建的。这构成了戈德弗罗伊(Godefroy)和奥泽瓦(Ozawa)提出的问题的Hölder版本的积极解决方案。实际上,在某些平坦度的假设下,发现紧凑型凸组是绝对$α$-Hölder缩回。其次,我们提供了一个严格凸出的Banach Space $ x $任意接近$ \ ell_2 $(对于Banach Mazur距离)和有限的尺寸紧凑型凸子集的示例,即使最近的点映射即使限制在有限集时,最近的点映射也不均匀地连续。

In this paper, two main results concerning uniformly continuous retractions are proved. First, an $α$-Hölder retraction from any separable Banach space onto a compact convex subset whose closed linear span is the whole space is constructed for every positive $α<1$. This constitutes a positive solution to a Hölder version of a question raised by Godefroy and Ozawa. In fact, compact convex sets are found to be absolute $α$-Hölder retracts under certain assumption of flatness. Second, we provide an example of a strictly convex Banach space $X$ arbitrarily close to $\ell_2$ (for the Banach Mazur distance) and a finite dimensional compact convex subset of $X$ for which the nearest point map is not uniformly continuous even when restricted to bounded sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源