论文标题
大量非线性$ {\ Mathbb S}^1 \ times {\ Mathbb s}^1 $ -Sigma模型
Kinks in massive non-linear ${\mathbb S}^1\times{\mathbb S}^1$-Sigma models
论文作者
论文摘要
在本文中,在几个大型非线性sigma模型中产生的整个扭结品种的目标空间是torus $ {\ mathbb s}^1 \ times {\ mathbb s}^1 $。这种可能性是通过将Bogomolny程序适应非欧几里得空间来构建一阶微分方程的基础。在解决方案的家族中,发现了连接相同真空的非亲本关系。这类解决方案通常被认为不稳定。但是,在这种情况下,通过目标空间的非紧密连接性获得的拓扑约束将这些非主张扭结变成了全球稳定的解决方案。方程的分析分辨率允许对某些基本纠结的线性稳定性进行完整的研究。
In this paper the whole kink varieties arising in several massive non-linear Sigma models whose target space is the torus ${\mathbb S}^1\times{\mathbb S}^1$ are analytically calculated. This possibility underlies the construction of first-order differential equations by adapting the Bogomolny procedure to non-Euclidean spaces. Among the families of solutions non-topological kinks connecting the same vacuum are found. This class of solutions are usually considered to be not globally stable. However, in this context the topological constraints obtained by the non-simply connectedness of the target space turn these non-topological kinks into globally stable solutions. The analytical resolution of the equations allows the complete study of the linear stability for some basic kinks.