论文标题

杂双曲线空间中局部限制的流量和尖锐的迈克尔·西蒙不平等现象

Locally constrained flows and sharp Michael-Simon inequalities in hyperbolic space

论文作者

Cui, Jingshi, Zhao, Peibiao

论文摘要

Brendle [6]成功地建立了敏锐的Michael-Simon不平等,用于具有非负分段曲率的Riemannian歧管($ \ Mathcal {K} \ GEQ 0 $),并且证明依赖于Alexandrov-Bakelman-Pucci方法。然而,该结果不能扩展到双曲线空间$ \ mathbb {h}^{n+1} $($ \ mathcal {k} = -1 $),如CounterExample 1.7所示。 在本文中,我们提出了有关刺激性的1.8和1.9,内容涉及以$ k $ th平均曲率的尖锐版本版本。但是,\ cite {b21}中的证明方法未能验证这些猜想的有效性。最近,作者[12]通过Brendle-Guan-Li的流量证明了猜想1.8和1.9仅以$ H $ -CONVEX HYPERFACES。 本文旨在利用其他类型的曲率流,以证明凸状条件较弱的高度丘脑的猜想1.8和1.9。对于$ k = 1 $,我们首先在$ \ mathbb {h}^{n+1} $中研究了新的局部约束平均曲率流(1.9),并证明其长期存在和指数收敛。然后,通过流(1.9)确认了$ \ mathbb {h}^{n+1} $的星形超曲面的平均曲率的尖锐迈克尔·西蒙类型不等式。对于$ k \ geq 2 $,$ k $ $ k $的敏锐的迈克尔·西蒙(Michael-Simon)不平等 - $ \ $ k $ -convex hypersurfaces的平均曲率,$ \ mathbb {h}^{n+1} $在$ \ mathbb {h}^{n+1} $中被用本地约束的逆弯曲流(1.11)被Scheuer和xia [31ia]证明。

Brendle [6] successfully establishes the sharp Michael-Simon inequality for mean curvature on Riemannian manifolds with nonnegative sectional curvature ($\mathcal{K} \geq 0$), and the proof relies on the Alexandrov-Bakelman-Pucci method. Nevertheless, this result cannot be extended to hyperbolic space $\mathbb{H}^{n+1}$ ($\mathcal{K} = -1$), as demonstrated by Counterexample 1.7. In the present paper, we propose Conjectures 1.8 and 1.9 concerning the hyperbolic version of the sharp Michael-Simon type inequality for $k$-th mean curvatures. However, the proof method in \cite{B21} failed to verify the validity of these conjectures. Recently, the authors [12] proved Conjectures 1.8 and 1.9 only for $h$-convex hypersurfaces by means of the Brendle-Guan-Li's flow. This paper aims to utilize other types of curvature flows to prove Conjectures 1.8 and 1.9 for hypersurfaces with weaker convexity conditions. For $k = 1$, we first investigate a new locally constrained mean curvature flow (1.9) in $\mathbb{H}^{n+1}$ and prove its longtime existence and exponential convergence. Then, the sharp Michael-Simon type inequality for mean curvature of starshaped hypersurfaces in $\mathbb{H}^{n+1}$ is confirmed through the flow (1.9). For $k \geq 2$, the sharp Michael-Simon inequality for $k$-th mean curvatures of starshaped, strictly $k$-convex hypersurfaces in $\mathbb{H}^{n+1}$ is proven using the locally constrained inverse curvature flow (1.11) introduced by Scheuer and Xia [31].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源