论文标题

切向张量场的扩散:几何特性的数值问题和影响

Diffusion of tangential tensor fields: numerical issues and influence of geometric properties

论文作者

Bachini, Elena, Brandner, Philip, Jankuhn, Thomas, Nestler, Michael, Praetorius, Simon, Reusken, Arnold, Voigt, Axel

论文摘要

我们研究了弯曲表面上切向张值数据的扩散。为此,收集了几种基于有限的元素的数值方法,并用于解决切向表面N量的热流问题。这些方法在所使用的表面表示,所需的几何信息以及切向条件的处理方面有所不同。我们强调了几何特性的重要性及其增加的影响,因为张力度从n = 0到n> = 1。提出了一个特定的示例,该示例说明了曲率如何极大地影响溶液的行为。

We study the diffusion of tangential tensor-valued data on curved surfaces. For this purpose, several finite-element-based numerical methods are collected and used to solve a tangential surface n-tensor heat flow problem. These methods differ with respect to the surface representation used, the geometric information required, and the treatment of the tangentiality condition. We emphasize the importance of geometric properties and their increasing influence as the tensorial degree changes from n=0 to n>=1. A specific example is presented that illustrates how curvature drastically affects the behavior of the solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源