论文标题

具有可变系数的时空分数抛物线运算符的Calderón问题

The Calderón problem for space-time fractional parabolic operators with variable coefficients

论文作者

Banerjee, Agnid, Senapati, Soumen

论文摘要

我们研究了$(\ partial_t- \ perperatorName {div}(a(x)\ nabla_x)^s + q(x,x,t)$ for(0,1)$的$ s \ in(0,1)$的$ q $ quontim formim for e ellipt for frimim for fractim for frimim for frimim for frimim for frimim forime,通过全球弱的延续性属性获得的证明,涉及与工作后期的相关变量系数延长运算符的新卡尔曼估计。

We study an inverse problem for variable coefficient fractional parabolic operators of the form $(\partial_t -\operatorname{div}(A(x) \nabla_x)^s + q(x,t)$ for $s\in(0,1)$ and show the unique recovery of $q$ from exterior measured data. Similar to the fractional elliptic case, we use Runge type approximation argument which is obtained via a global weak unique continuation property. The proof of such a unique continuation result involves a new Carleman estimate for the associated variable coefficient extension operator. In the latter part of the work, we prove analogous unique determination results for fractional parabolic operators with drift.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源