论文标题
COX模型的贝叶斯多尺度分析
Bayesian Multiscale Analysis of the Cox Model
论文作者
论文摘要
分段恒定先验通常用于贝叶斯Cox比例危害模型中进行生存分析。尽管它很受欢迎,但这种贝叶斯方法的样本特性尚未得到充分了解。这项工作为在这种情况下的后验分布提供了统一的理论,而不是要求先验的偶联。我们首先在未知危险函数上获得了广泛的直方图先验的收缩率结果,并以伯恩斯坦形式证明了后验危险的渐近函数 - 伏米斯定理。其次,使用最近开发的多尺度技术,我们得出了累积危害和存活函数的功能限制结果。研究了贝叶斯可信集的频繁覆盖范围:我们证明,对于生存函数的某些易于计算的可靠频段是最佳的频繁置信带。我们进行了模拟研究,以确认这些预测,特别是在有限样本中的出色行为。我们的结果表明,贝叶斯方法可以提供一种简单的解决方案,以获得系数估计值和可靠的频段,以实践中生存功能。
Piecewise constant priors are routinely used in the Bayesian Cox proportional hazards model for survival analysis. Despite its popularity, large sample properties of this Bayesian method are not yet well understood. This work provides a unified theory for posterior distributions in this setting, not requiring the priors to be conjugate. We first derive contraction rate results for wide classes of histogram priors on the unknown hazard function and prove asymptotic normality of linear functionals of the posterior hazard in the form of Bernstein--von Mises theorems. Second, using recently developed multiscale techniques, we derive functional limiting results for the cumulative hazard and survival function. Frequentist coverage properties of Bayesian credible sets are investigated: we prove that certain easily computable credible bands for the survival function are optimal frequentist confidence bands. We conduct simulation studies that confirm these predictions, with an excellent behavior particularly in finite samples. Our results suggest that the Bayesian approach can provide an easy solution to obtain both the coefficients estimate and the credible bands for survival function in practice.