论文标题
过度参数化的变异量子本素体的收敛理论
A Convergence Theory for Over-parameterized Variational Quantum Eigensolvers
论文作者
论文摘要
差异量子本量(VQE)是在近期噪声中间尺度量子(NISQ)计算机上进行量子应用的有希望的候选者。尽管对VQE优化领域的理论理解进行了大量的实证研究和最新的进展,但优化VQE的融合的理解却少得多。我们对过度参数化制度中VQE的收敛性进行了首次严格分析。通过将训练动力学与单位球场上的Riemannian梯度流相关联,我们建立了足够数量的参数阈值,以进行有效收敛,这取决于多项式依赖于系统维度和光谱比,问题的属性,问题hamiltonian的特性,并且可以在某种程度上驻留梯度噪声。我们进一步说明,对于特定的VQE实例,可以通过建立与ANSATZ依赖性阈值相平行的阈值来大大降低这种过度参数化阈值。我们展示了我们的ANSATZ依赖性阈值可以作为不同VQE Ansatzes的训练性的代表,而无需进行经验实验,从而导致一种评估Ansatz设计的原则方法。最后,我们以一项支持我们理论发现的全面实证研究结论。
The Variational Quantum Eigensolver (VQE) is a promising candidate for quantum applications on near-term Noisy Intermediate-Scale Quantum (NISQ) computers. Despite a lot of empirical studies and recent progress in theoretical understanding of VQE's optimization landscape, the convergence for optimizing VQE is far less understood. We provide the first rigorous analysis of the convergence of VQEs in the over-parameterization regime. By connecting the training dynamics with the Riemannian Gradient Flow on the unit-sphere, we establish a threshold on the sufficient number of parameters for efficient convergence, which depends polynomially on the system dimension and the spectral ratio, a property of the problem Hamiltonian, and could be resilient to gradient noise to some extent. We further illustrate that this overparameterization threshold could be vastly reduced for specific VQE instances by establishing an ansatz-dependent threshold paralleling our main result. We showcase that our ansatz-dependent threshold could serve as a proxy of the trainability of different VQE ansatzes without performing empirical experiments, which hence leads to a principled way of evaluating ansatz design. Finally, we conclude with a comprehensive empirical study that supports our theoretical findings.