论文标题
在抽象文本摘要中利用局部性
Leveraging Locality in Abstractive Text Summarization
论文作者
论文摘要
神经注意力模型已在许多自然语言处理任务上取得了重大改进。但是,自我发项模块相对于输入长度的二次记忆复杂性在长文本摘要中阻碍了其应用。我们没有设计更有效的注意力模块,而是通过研究有限上下文的模型是否可以具有竞争性能来解决此问题,而这些模型与记忆有效的注意力模型相比,通过将输入视为单个序列,这些模型维持全局上下文。我们的模型应用于单个页面,这些页面包含在编码和解码过程中由局部原理分组的输入的一部分。我们在文本摘要中以不同级别的粒度进行了经验研究,从句子到文件。我们的实验结果表明,与具有有效的注意力模块的强基础相比,我们的模型具有更好的性能,并且我们的分析提供了对我们所了解的自动化建模策略的进一步见解。
Neural attention models have achieved significant improvements on many natural language processing tasks. However, the quadratic memory complexity of the self-attention module with respect to the input length hinders their applications in long text summarization. Instead of designing more efficient attention modules, we approach this problem by investigating if models with a restricted context can have competitive performance compared with the memory-efficient attention models that maintain a global context by treating the input as a single sequence. Our model is applied to individual pages which contain parts of inputs grouped by the principle of locality during both encoding and decoding. We empirically investigated three kinds of locality in text summarization at different levels of granularity, ranging from sentences to documents. Our experimental results show that our model has a better performance compared with strong baselines with efficient attention modules, and our analysis provides further insights into our locality-aware modeling strategy.