论文标题
MMWave MIMO频道估计的GAN训练的空中设计
Over-the-Air Design of GAN Training for mmWave MIMO Channel Estimation
论文作者
论文摘要
未来的无线系统正在朝着更高的载波频率趋向于提供更大的通信带宽,但需要使用大型天线阵列。用于渠道估计的现有信号处理技术在性能和试点开销方面并不能很好地扩展到这种“高维”制度。同时,基于培训的基于深度学习的方法进行渠道估计需要大量标记的数据集映射试验测量以清洁通道实现,只能使用模拟渠道在离线上生成。在本文中,我们开发了一种新颖的无监督的无天线(OTA)算法,该算法利用嘈杂的试点测量值来训练深层生成模型,以输出beamspace mimo通道实现。我们的方法利用生成的对抗网络(GAN),同时使用有条件的输入来区分视线(LOS)和非线(NLOS)通道实现。我们还提出了OTA算法的联合实现,该实现将GAN培训分发给多个用户,并大大减少了用户端计算。然后,我们从有限数量的试点测量值中制定通道估计作为反问题,并通过优化受过训练的生成模型的输入向量来重建通道。我们提出的方法在LOS和NLOS通道模型上都显着优于正交匹配的追求,以及在LOS通道模型上的EM-GM-AMP(一个近似消息传递算法),同时以归一化通道重建误差的方式在NLOS通道模型上实现了可比性的性能。更重要的是,我们提出的框架有可能使用真正的嘈杂的试点测量值在线培训,不仅限于特定的频道模型,甚至可以从噪声数据中用于数据集生成器的联合OTA设计。
Future wireless systems are trending towards higher carrier frequencies that offer larger communication bandwidth but necessitate the use of large antenna arrays. Existing signal processing techniques for channel estimation do not scale well to this "high-dimensional" regime in terms of performance and pilot overhead. Meanwhile, training deep learning based approaches for channel estimation requires large labeled datasets mapping pilot measurements to clean channel realizations, which can only be generated offline using simulated channels. In this paper, we develop a novel unsupervised over-the-air (OTA) algorithm that utilizes noisy received pilot measurements to train a deep generative model to output beamspace MIMO channel realizations. Our approach leverages Generative Adversarial Networks (GAN), while using a conditional input to distinguish between Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) channel realizations. We also present a federated implementation of the OTA algorithm that distributes the GAN training over multiple users and greatly reduces the user side computation. We then formulate channel estimation from a limited number of pilot measurements as an inverse problem and reconstruct the channel by optimizing the input vector of the trained generative model. Our proposed approach significantly outperforms Orthogonal Matching Pursuit on both LOS and NLOS channel models, and EM-GM-AMP -- an Approximate Message Passing algorithm -- on LOS channel models, while achieving comparable performance on NLOS channel models in terms of the normalized channel reconstruction error. More importantly, our proposed framework has the potential to be trained online using real noisy pilot measurements, is not restricted to a specific channel model and can even be utilized for a federated OTA design of a dataset generator from noisy data.