论文标题

通过大都市悬挂式命名游戏的紧急沟通,并具有深刻的生成模型

Emergent Communication through Metropolis-Hastings Naming Game with Deep Generative Models

论文作者

Taniguchi, Tadahiro, Yoshida, Yuto, Taniguchi, Akira, Hagiwara, Yoshinobu

论文摘要

关于符号出现系统的建设性研究旨在研究可以更好地解释人类语言演变,符号系统的创建以及内部表示的构建的计算模型。这项研究为紧急通信提供了一个新的模型,该模型基于概率生成模型(PGM),而不是基于深入强化学习的判别模型。我们通过概括了先前提出的模型来定义大都市束缚(MH)命名游戏。正如许多新兴的沟通研究所假定的那样,这不是带有明确反馈的参考游戏。相反,这是一款基于共同关注而没有明确反馈的游戏。从数学上讲,MH命名游戏被证明是一种综合PGM的MH算法,该算法结合了两个玩命名游戏的代理。从这个角度来看,符号的出现被认为是分散的贝叶斯推论,符号通信被视为个人跨模式推断。这一概念导致了有关语言进化的集体预测编码假设},通常是符号的出现。我们还提出了高斯之间的混合模型(GMM)+变化自动编码器(VAE),这是基于MH命名游戏的新兴通信的深层生成模型。该模型已在MNIST和水果360个数据集上进行了验证。实验发现表明,类别是由代理观察到的真实图像形成的,并且通过通过MH命名游戏成功利用代理的两个观察结果,可以在代理之间正确共享标志。此外,学者们证实了视觉图像是从代理商说的标志中回忆的。值得注意的是,没有监督和奖励反馈的新兴沟通改善了无监督的代理人学习代理人的表现。

Constructive studies on symbol emergence systems seek to investigate computational models that can better explain human language evolution, the creation of symbol systems, and the construction of internal representations. This study provides a new model for emergent communication, which is based on a probabilistic generative model (PGM) instead of a discriminative model based on deep reinforcement learning. We define the Metropolis-Hastings (MH) naming game by generalizing previously proposed models. It is not a referential game with explicit feedback, as assumed by many emergent communication studies. Instead, it is a game based on joint attention without explicit feedback. Mathematically, the MH naming game is proved to be a type of MH algorithm for an integrative PGM that combines two agents that play the naming game. From this viewpoint, symbol emergence is regarded as decentralized Bayesian inference, and semiotic communication is regarded as inter-personal cross-modal inference. This notion leads to the collective predictive coding hypothesis} regarding language evolution and, in general, the emergence of symbols. We also propose the inter-Gaussian mixture model (GMM)+ variational autoencoder (VAE), a deep generative model for emergent communication based on the MH naming game. The model has been validated on MNIST and Fruits 360 datasets. Experimental findings demonstrate that categories are formed from real images observed by agents, and signs are correctly shared across agents by successfully utilizing both of the observations of agents via the MH naming game. Furthermore, scholars verified that visual images were recalled from signs uttered by agents. Notably, emergent communication without supervision and reward feedback improved the performance of the unsupervised representation learning of agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源